Well-posedness for a transport equation with nonlocal velocity

نویسندگان

  • Hongjie Dong
  • Vasudeva Murthy
چکیده

We study a one-dimensional transport equation with nonlocal velocity which was recently considered in the work of Córdoba, Córdoba and Fontelos [4]. We show that in the subcritical and critical cases the problem is globally well-posed with arbitrary initial data in Hmax{3/2−γ,0}. While in the supercritical case, the problem is locally well-posed with initial data in H3/2−γ , and is globally well-posed under a smallness assumption. Some polynomial-in-time decay estimates are also discussed. These results improve some previous results in [4].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Analysis for Convection Dominated Transport Equations

In this paper, we perform a systematic multiscale analysis for convection dominated transport equations with a weak diffusion and a highly oscillatory velocity field. The paper primarily focuses on upscaling linear transport equations. But we also discuss briefly how to upscale two-phase miscible flows, in which case the concentration equation is coupled to the pressure equation in a nonlinear ...

متن کامل

Global Well-posedness for Euler-boussinesq System with Critical Dissipation

In this paper we study a fractional diffusion Boussinesq model which couples the incompressible Euler equation for the velocity and a transport equation with fractional diffusion for the temperature. We prove global well-posedness results.

متن کامل

Global Well-posedness for a Boussinesq- Navier-stokes System with Critical Dissipation

In this paper we study a fractional diffusion Boussinesq model which couples a Navier-Stokes type equation with fractional diffusion for the velocity and a transport equation for the temperature. We establish global well-posedness results with rough initial data.

متن کامل

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation

We study a 1D transport equation with nonlocal velocity and supercritical dissipation. We show that for a certain class of initial data the solution blows up in finite time.

متن کامل

Formation of singularities for a transport equation with nonlocal velocity

We study a 1D transport equation with nonlocal velocity and show the formation of singularities in finite time for a generic family of initial data. By adding a diffusion term the finite time singularity is prevented and the solutions exist globally in time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008